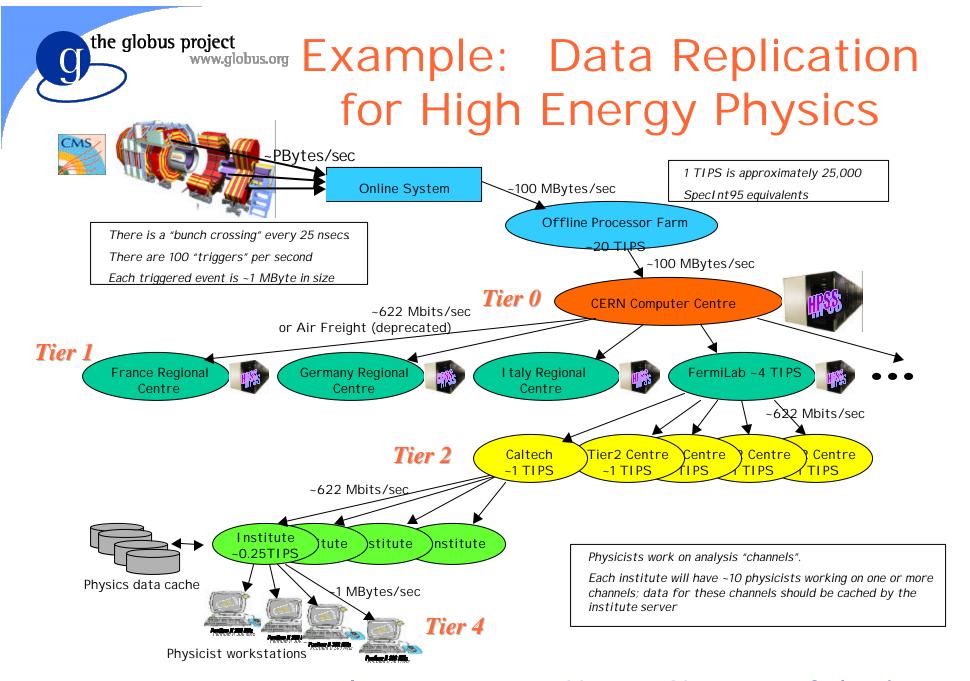


Replica Management for the Grid

Ann Chervenak
USC Information Sciences Institute
annc@isi.edu

Replica Management in Grids

- Need to manage large scientific computing datasets
 - Terabytes or petabytes shared by researchers around the world
 - Read-only data, "published" by experiments
- Replicate portions of the data set in multiple locations
 - Local control, reduce access times, provide fault tolerance
- Discover replicas and select the best replica for a necessary data transfer


Outline

- Data Intensive Applications: two examples
- Requirements for Data Grids
- A Replica Management System
 - Current implementation: Replica catalog and API for reliable replication
 - Address issues of replica location, file aggregation and reliable replication
- Replica Location Service
 - A flexible design framework
 - Addresses issues of reliability, scalability and performance

Climate Modeling

- Detecting global climate change
- Simulate climate variability over long periods
 - Often 100 years
 - Long-duration computations: 1 month at 100 Gflops
 - Large output files: 10 terabytes
- Compare simulation results to observed variability
- With teraflop computers: requirements will increase by factor of 10 or more
- Need to publish, replicate and share these files with other researchers

- Terabytes or petabytes of data
 - Often read-only data, "published" by experiments
- Large data storage and computational resources shared by researchers around the world
 - Distinct administrative domains
 - Respect local and global policies governing how resources may be used
- Provide access to:

the globus project

- Raw experimental data
- Simulation and analysis data products

the globus project www.globus.org

Data Grid Requirements (Cont.)

- Management of data replication
 - Register and query physical copies of files
 - Reliably create and register new replicas
 - Select the best replica for a data transfer
- Security
 - Protect knowledge about existence of data

Fundamental Issues for Replica Management

• Location: finding copies of files

the globus project

- Aggregation: manage groups of files to improve convenience and scalability
- Creation/Reliable replication: copy files reliably and register them with management system
- Scalability: manage large numbers of files
- Performance: fast response time, large query and update rates
- Reliability: resilient to component failures

The Globus Architecture for Replica Management in Grids

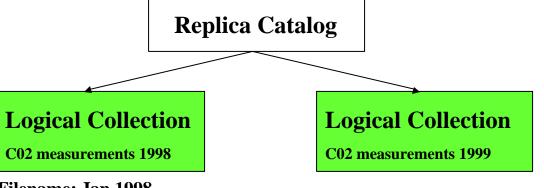
- Managing multiple copies of data in wide area environments
- Identify <u>replica cataloging</u> and <u>reliable replication</u> as two fundamental services
 - Layer on other Grid services: GSI, transport, information service
- Used by higher-level services:
 - Replica selection

the globus project

Automatic creation of new replicas

Our Data Model

- Data are organized into files
- Users group files into collections
- A replica or location is a subset of a collection stored on a particular physical storage system
- Logical file name: globally unique ID for a file within data grid's namespace
- Physical file name: location of an instance of a file on a particular storage system
- Maintain *mapping* between logical names for files and collections and one or more physical locations



The Replica Catalog

- Allows users to register replicas
- Answers queries about existing replicas
- Logical files
 - Entities with globally unique names, may have one or more physical instances
- Logical collection
 - Logical aggregations of groups of files (e.g., simulation timesteps)
- Location entries
 - All information required to map from logical to physical file names (hostname, port number, path...)
 - Location corresponds to one physical storage system

the globus project www.alobus.org

Replica Catalog Structure

Filename: Jan 1998 Filename: Feb 1998

Location jupiter.isi.edu

Filename: Mar 1998 Filename: Jun 1998

Filename: Oct 1998

Protocol: GridFTP UrlConstructor:

GridFTP://jupiter.isi.edu/

nfs/v6/climate

Location sprite.llnl.gov

Filename: Jan 1998

Filename: Dec 1998

Protocol: ftp

UrlConstructor:

ftp://sprite.llnl.gov/ pub/pcmdi

Logical File Parent

Logical File Jan 1998

Size: 1468762

Logical File Feb 1998

with the Replica Management API

Reliable replication

- Combines storage system operations with replica catalog updates
- Create new replicas reliably
- Automatically register them in the replica catalog

Combined operations include:

- Copy a file from one storage system to another and update the replica catalog
- Delete a file from storage system and update catalog

Reliability features

 If can't complete operation, must rollback to previous consistent replica catalog state

Replica Selection

Built on top of replica management

Given multiple physical copies of a desired file, want to select the "best" copy for a data transfer

- Select replica with best estimated performance
- Rely on information services that provide dynamic information about grid conditions
 - Storage system latency, bandwidth, load
 - Network latency and bandwidth
 - Authorization
 - User preferences

A Replica Location Service Framework

- Distribute replica management system to avoid single point of failure, performance bottleneck
- Applications may operate at different scales, have different resources and different tolerances to inconsistent RLS information
- We define a flexible RLS framework
- Allows users to make tradeoffs among:
 - Consistency, space overhead, reliability, update costs, query costs
- By different combinations of 5 essential elements, the framework supports a variety of RLS designs

Five Essential Elements of a Flexible RLS Framework

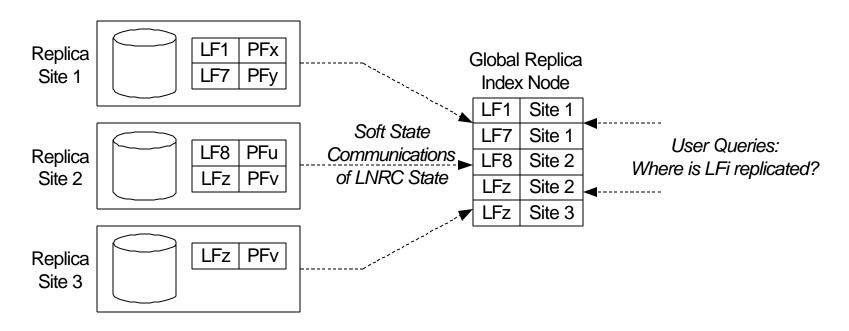
Reliable Local State

Maintains consistent information about replicas at a single replica site

- Updated when files are created or destroyed on local storage system
- Contains mappings between LFNs & PFNs
- Answers queries

2. Global State with Relaxed Consistency Implement as set of one or more Global Replica Index Nodes

- Contain some LFN, replica site mappings
- Accept periodic inputs from sites describing state
- Answer queries for replicas associated with an LFN

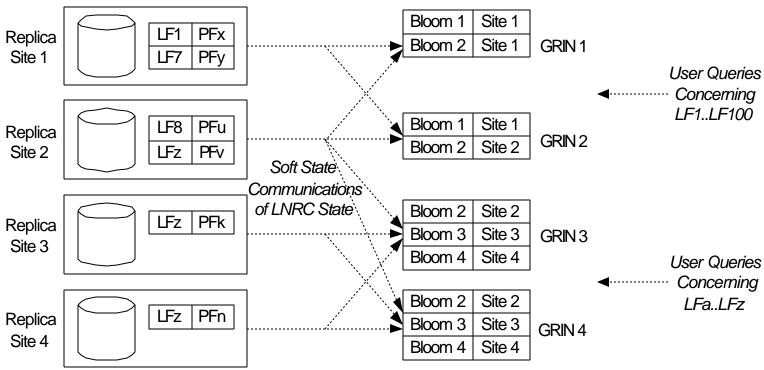

Five Essential Elements of a Flexible RLS Framework

3. Soft State mechanisms for maintaining global state

Soft state: information that times out and must be periodically refreshed

- Stale information removed implicitly via timeouts
- Index node state need not be persistent
- 4. Compression of State Updates
 Optional mechanism for reducing:
 - communication requirements for state updates
 - storage system requirements on GRINs
- 5. Membership Protocol For locating participating replica sites and GRINs

Nonredundant Global Index



All updates sent to a centralized GRIN

Not scalable: All queries serviced by a single index

Not reliable: Single point of failure

Partitioning, Redundancy and Bloom Filter Compression

- Updates to specific, redundant GRINs based on LFN
- More scalable, reliable
- Limited storage and communication costs

Summary

- Replica Management is a challenging problem for data-intensive applications
 - Terabytes and petabytes of data
 - Replicated and shared by researchers around the world
- Globus replica management
 - Replica catalog
 - Reliable replication API
- Replica Location Service
 - Framework for flexible design of distributed replica location services
 - Reliable local state, relaxed global state, soft state updates, compression, membership